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Optimal search methods are proposed for solving optimization problems with analytically unobtainable 
objectives. This paper proposes a method by incorporating sampling schemes into the directional 
direct search with variable number sample path and investigates its effectiveness in solving stochastic 
optimization problems. We also explore the conditions on sample sizes at each iteration under which 
the convergence in probability can be guaranteed. Finally, a set of benchmark problems are numerically 
tested to show the effectiveness in different sampling schemes.
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1. Introduction

Consider unconstrained stochastic optimization problem

min
x∈Rp

{
F (x) := E

[
f
(
x, ξ(ω)

)]}
(1)

where ξ : � → � ⊂ Rq is a random vector defined on a probabil-
ity space (�, F , P ), E[·] is the mathematical expectation operator. 
Throughout this paper, we assume that E[ f (x, ξ(ω))] is well de-
fined for every x ∈ Rp and the distributions of ξ cannot be ana-
lytically obtained. To ease the notation, we write ξ(ω) as ξ and 
the context will make it clear when ξ should be interpreted as a 
deterministic vector.

One standard technique for solving the problem (1) is the 
sample average approximation (SAA) approach. By incorporat-
ing an independently identically distributed (iid) sample ξ N :=
(ξ1, · · · , ξN )� ∈ �N ⊂ Rq × · · · × Rq , this method attains a “de-
terministic” approximation of the true problem (1) by solving

min
x∈X

F N(x) := 1

N

N∑
i=1

f (x, ξi) (2)

where we refer (2) as the SAA problem with sample size N . We 
write F (x, ξ N ) to emphasis the randomness in F N(x) when ξ N is 
not realized.
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Several optimal search methods have been proposed for solving 
deterministic optimization problems, among which the directional 
direct search (DDS) is one of well-investigated [11,13] and proved 
to be effective for the unconstrained optimization problem

min
x∈Rp

F (x). (3)

The essence of the DDS is finding the optimal solution via an up-
dating scheme for candidate solutions. The direct incorporation of 
the DDS for solving (2) might attain an approximation solution of 
(1). However, finite samples prohibit the convergence of the SAA 
problem. Therefore appropriate sampling schemes are necessary to 
guarantee the probability convergence when solving stochastic op-
timization problems [6]. This paper investigates sampling schemes 
incorporated into the DDS algorithm to ensure the convergence of 
the algorithm to an optimal solution of the true problem (1) and 
balance the effectiveness of sampling and the efficiency of the al-
gorithm iterations.

The rest of the paper is organized as follows. Section 2 briefly 
reviews the related literature. In Section 3, we propose the direc-
tional direct search algorithm for unconstrained stochastic opti-
mization and the sampling scheme to update samples iteratively. 
In Section 4, we analyze the convergence of the proposed algo-
rithm. We compare the performance among different sample size 
schemes and perform computational study in Section 5.

2. Literature review

When incorporating SAA methods into the DDS framework, 
how to determine a proper sample size in each iteration remains 
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a main difficulty. In this study, we consider sequential sampling 
schemes proposed in [9] in which the samples are updated at ev-
ery iteration in the algorithms.

One stream of sequential sampling approach is solving a se-
quence of SAA problems with increasing sample size [4,15]. At 
every iteration, the solution attained at preceding iteration can be 
used as a start point and a new SAA problem is constructed and 
solved. Pasupathy [14] analyzes the asymptotically optimal sam-
ple size and the error-tolerance level in the root finding problem. 
More recently, Royset [16] shows that this optimal convergence can 
rarely be realized in finite sample simulation. For stochastic pro-
gramming solved by standard nonlinear programming algorithm, 
Bayraksan and Morton [3] develop a scheme to evaluate the quality 
of solutions of sequential SAA problems and determine the proper 
sample sizes with the aim of minimizing the total computational 
efforts.

Another stream is using different samples at each iteration in 
the iterative optimization algorithms, which is called the variable 
number sample path (VNSP) approach. Targeting at solving a two-
stage stochastic programming with recourse, Shapiro and Homem-
de Mello [17] propose a sequential quadratic programming method 
with different sample paths, in which the value, first and second 
order derivatives of the objective function are estimated from SAA 
at each iteration. A similar approach is adapted to optimize mixed 
logit model in Bastin et al. [2]. Focusing on incorporating the VNSP 
to the trust region approach, Deng and Ferris [7] apply Powell’s 
unconstrained optimization method by quadratic approximation to 
solve a series of SAA problems under the VNSP scheme and achieve 
the convergence of the algorithm to a stationary point. Most recent 
progress on the trust region method for stochastic optimization is 
achieved by Chen et al. [5] which propose and analyze a trust-
region model-based algorithm for solving unconstrained stochastic 
optimization problems.

Most of the researches on VNSP use optimization methods 
that require derivative information. While there are many types 
of problems that neither the gradient nor the structure of the ob-
jective function is known or computable, for instance, simulation-
optimization problems. When solving these problems, the only 
known information is the estimates of function values at finite can-
didate solutions.

To our best knowledge, the pure random search is the first opti-
mization approach combined with VNSP [9] for solving a stochastic 
optimization with a finite feasible set. Homem-de Mello [9] proves 
the pointwise convergence of the approximation to the true objec-
tive function under some conditions on the growth rate of sample 
size in each iteration. Kim and Zhang [10] and Chen and Kelley [6]
propose a coordinate search algorithm for unconstrained stochastic 
optimization and stochastic optimization with hidden constraints 
respectively. Chen and Kelley [6] propose a more flexible frame-
work in which the set of search directions is increased as the algo-
rithm progresses and a surrogate model is solved by quasi-Newton 
method with approximated gradients. This is also the first work 
that investigate the convergence properties of deterministic direct 
search methods with Monte Carlo simulated objective functions. By 
incorporating similar sampling schemes [1] explore another deriva-
tive free algorithm, StoMADS, generalized from well-known mesh 
adaptive direct search, to solve stochastic blackbox optimization 
using probabilistic estimates, and analyzed its convergence proper-
ties in probability. One essential difference between our work and 
above two works is on the sampling schemes. Both studies entail 
a more flexible sampling scheme in which different samples are 
used at each function evaluation within an iteration and thus can 
be applied for general black-box optimization problems. The ap-
proach in this study focuses on achieving the convergence results 
of the variable sample path algorithm and the bounds of approx-
imation when sample size increases sufficiently large. To this end, 
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we requires samples being fixed independently from the solutions 
in each iteration. The sample can only be updated when new iter-
ation is launched.

This paper proposes a generalized directional direct search 
(GDDS) method which extends the studies in [6,10]. We investi-
gate the sampling schemes incorporated into the GDDS method. 
Particularly, the results also reveals how the sample size and the 
step-length in each iteration are related to the convergence of the 
algorithm in probability. For details of the direct search algorithm 
please refer to [11–13].

3. Algorithm

The DDS is an optimal search algorithm proposed for solving 
the problem

min
x∈Rp

E
[

f (x, ξ)
]
. (4)

With the assumption that the explicit form of objective function 
E[ f (x, ξ)] is unknown and has to be approximated by taking sam-
ple average, the DDS framework is incorporated to solve (1) with 
an iteratively sampling scheme.

3.1. Directional direct search

We propose a GDDS algorithm for (4) and refer the readers 
to its deterministic version, a generating set search method, Algo-
rithm 3.2 in [11]. The parameters in the initialization of the GDDS 
algorithm consist of the initial guess x0 ∈ Rp , sample size N0, 
the tolerance of step-length �tol > 0, and the initial step-length 
�0 > �tol. In iteration k candidate xk is chosen by finding an ap-
propriate pair of step-length �k > 0 and search direction dk ∈ Dk
which are determined by an evaluation process with expansion 
factor φk ≥ 1 and contraction factor θk < θmax < 1.

We inherit the notations from [9] by representing Nk the 
size of the samples used at iteration k. We call {Nk}∞k=1 the 
schedule of sample sizes associated with the algorithm under 
scrutiny. Let �∞ := �N1 × �N2 × · · · . Note that a point ξ∞ :=
(ξ1

1 , · · · , ξ N1
1 , ξ1

2 , · · · , ξ N2
2 , · · · ) ∈ �∞ represents a sample-path fol-

lowed along the iterations of the algorithm. In the rest part of 
the paper, we rewrite ξn

k by ξn for n = 1, 2, · · · , Nk and the con-
text will make it clear in which iteration ξn is generated. Again, 
let P̃ being the corresponding probability distribution of ξ∞ on 
�∞ generated by P for ξ on �. Moreover, in iteration k, to ap-
proximate E[ f (x, ξ)], a sample ξk := ξ Nk = {ξ1, · · · , ξNk } is gen-
erated from the distribution P or some distribution Pk close to 
P , and E[ f (x, ξ)] is approximated by implementing ξn for n =
1, 2, · · · , Nk into F Nk (x) in (2). It is not difficult to see that F Nk

depends on ξk and is unknown before ξk being realized.
Denote by Fk(x, ξk) the value function in iteration k before the 

realization of ξk which is defined in support set �Nk . We use

Fk(x, ξk) := 1

Nk

Nk∑
n=1

f (x, ξn)

instead of F Nk to emphasize its dependency on ξk . We also use 
∇ Fk(x, ξk) to denote the gradient of Fk(x, ξk) with respect to x for 
ξk ∈ �Nk .

Algorithm 1. (Generalized Directional Direct Search (GDDS))
For each iteration k = 0, 1, 2, . . .

• Step 1. Generate sample ξk := {ξ1, ξ2, . . . , ξNk }.
• Step 2. Evaluate Fk(x, ξk) at current solution x = xk and candi-

date solutions x = xk + �kdi, ∀di ∈Dk .
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S: (Successful Iteration) If there exists dk ∈ Dk such that 
Fk(xk + �kdk, ξk) < Fk(xk, ξk) − ρ(�k), then:
- Set xk+1 = xk + �kdk , �k+1 = φk�k ,
U : (Unsuccessful Iteration) Otherwise, Fk(xk + �kd, ξk) ≥
Fk(xk, ξk) − ρ(�k) for all d ∈Dk , then:
- Set xk+1 = xk , �k+1 = θk�k
- If �k+1 < �tol, then terminate.

• Step 3. Perform the sampling scheme to determine sample size 
Nk+1 in next iteration; Go to Step 1.

It is worth explaining some details in the algorithm. First of all, 
in the algorithm the set of directions Dk is finite and varies at 
different iterations. The design of Dk has been well investigated in 
[11,12]. In literature Dk is required to contain p′ ≥ p +1 vectors in 
Rp and positively span Rp and can be either changed at each iter-
ation by including additional search directions or fixed. To focus on 
the sampling schemes, the GDDS algorithm in this paper inherits 
the framework of Dk designing in [11]. When Dk positively spans 
Rp , the worst-case distance between the steepest descent direc-
tion ν = −∇ f (x) and searching direction that makes the smallest 
angle with ν is measured by the cosine measure [11]

κ(Dk) = min
ν∈Rp

max
d∈Dk

νT d

‖ν‖‖d‖ . (5)

Note that the algorithm requires the capability of fixing the sample 
and using the same sample to evaluate the current and all the 
candidate points in each iterations, which might not be satisfied in 
some complicated situations.

Besides, the nonnegative function ρ is included to set a thresh-
old on the acceptable decrease of the objective function at a can-
didate solution. In our study we use the convergence analysis and 
numerical tests together to reveal that the fact that condition in 
Algorithm 3.2 [11], ρ(t)/t → 0 as t ↓ 0, is not sufficient to guar-
antee the convergence of the GDDS algorithm. New conditions are 
given in Section 3.2.

3.2. Sampling scheme

The sampling scheme is a critical difference between Algorithm 
3.2 in [11] and our algorithm. Different stochastic optimization al-
gorithms might require different sampling schemes to guarantee 
the convergence in probability. We focus on a new type of sam-
pling scheme where the step-length �k is taken into account to 
determine {Nk}∞k=1. In the scheme, the sets of successful and un-
successful iterations in the algorithm are denoted as S and U
respectively.

Sampling scheme.
For each iteration k = 0, 1, 2, . . .

• If k ∈ S , Nk+1 = Nk;
• If k ∈ U ,

Nk+1 = max

{
N0,

⌈
βk+1

log(k + 1)

�2
k+1

⌉}
. (6)

It is important to notify that the sampling scheme given in (6)
increases along with the growth of iterations and the sample sizes 
are enforced to be greater than N0 to guarantee sufficient samples 
in early iterations. In iteration k ∈ S we can keep Nk+1 = Nk un-
changed, where the success in an iteration implies that the sample 
averaged objective function is close enough to its real counterpart 
and hence can be used to determine the right direction without 
additional samples.
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4. Convergence analysis

We investigate the convergence property of the algorithm.

Assumption 1. Assume that (i) for every x ∈ Rp random function 
f (x, ξ) is continuously differentiable at x for almost every ξ ∈ �, 
(ii) for all x ∈ Rp , f (x, ξ) is dominated by an integrable function, 
and (iii) ∇ f (x, ξ) is Lipschitz continuous with constant M at every 
x ∈Rp for almost every ξ ∈ �.

Under Assumption 1, Fk(x, ξk) is continuously differentiable 
and the gradient ∇ Fk(x, ξk) is Lipschitz continuous with constant 
M at all x ∈ Rp for almost every ξ∞ ∈ �∞ and k = 1, 2, · · · . Thus 
we can verify the conditions in Theorem 7.52 [18].

Assumption 2. Function ρ : [0, +∞) →R+ ∪ {0} in Algorithm 1 is 
continuous and monotonically increasing and satisfies the follow-
ing conditions

(i) ρ(t)/t → 0 as t ↓ 0;
(ii) (strictly sufficient decrease) ρ(t) > 0 for any t > 0.

The most difference between ρ(t) and its counterpart for deter-
ministic cases in [11] is the condition (ii) where ρ(t) = 0 for t > 0
(e.g. ρ ≡ 0) is excluded. We will show in the numerical tests that 
{xk}∞k=1 does not converge when this condition is not satisfied.

Assumption 3. The expected value and the variance of f (x, ξ) sat-
isfy the following conditions

F̄ := inf
x∈Rp

E
[

f (x, ξ)
]
> −∞, σ̄ 2 := sup

x∈Rp
var

(
f (x, ξ)

)
< ∞

It is worth to mention that with Assumption 3 the expectation 
and the variance of f (x, ξ) at every candidate in the algorithm are 
less than F̄ and σ̄ 2 respectively. In addition, we define

σ 2
k = max

{
var

(
f (xk, ξ)

)
,var

(
f (xk + �kd, ξ)

)}
which is finite for any iteration k = 0, 1, · · · . We start to prove the 
convergence from the following proposition for k ∈ U .

Proposition 1. Under Assumption 1,

∥∥∇ Fk(xk, ξk)
∥∥ ≤ κ(Dk)

−1
(

M�k + ρ(�k)

�k

)
(7)

for k ∈ U and for almost every ξk ∈ �Nk .

The result implies that ‖∇ Fk(xk, ξk)‖ is either O (�k) or 
O (�−1

k ρ(�k)) for almost every ξk ∈ �Nk and k = 1, 2, · · · . The 
proof is given in the appendix. Next we show there exists a subse-
quence of step-length produced by Algorithm 1 converging to zero. 
Before proceeding to the result, we need the following well-known 
lemma.

Lemma 1. (Borel-Cantelli Lemma) Let (�, �, μ) be a measure space 
with μ(�) < ∞ and suppose {En}∞n=1 is a collection of measurable sets 
with En ⊂ � for n = 1, 2, · · · such that 

∑∞
n=1 μ(En) < ∞. Then

P
(

lim sup
n→∞

En

)
= 0

where lim supn→∞ En := ∩∞ ∪∞ Ek.
n=1 k≥n
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Proposition 2. Under Assumptions 2 and 3, the sequence of step lengths 
produced by Algorithm 1 satisfies

P̃
(

lim inf
k→+∞

�k = 0
)

= 1 (8)

with Nk > β�−2
k log k and c(�k) = βρ−1(�k)�k for some positive 

constant β sufficiently large.

The most challenging point in proving the convergence is that 
the SAA objective function varies along with iterations, while it 
is simply unchanged in the deterministic DDS in [11]. Therefore, 
the proof for [11, Theorem 3.4] cannot be applied. The proof of 
Proposition 2 is given in the appendix.

In fact, the result in Proposition 2 implies the value of β needs 
to be larger than �2

kρ
−2(�k) for the least �k before the stop 

of the algorithm. Now we proceed to compare the gradients of 
Fk(xk, ξk) and F (xk). At iteration k, we let

ε�k (xk;d) = F (xk) − F (xk + �kd)

�k

for all d ∈Dk . Correspondingly, we define

η�k (xk, ξk;d) = Fk(xk, ξk) − Fk(xk + �kd, ξk)

�k
.

Proposition 3. Under Assumptions 1 and 2, in iteration k of Algorithm 1, 
for any δ > 0 and any d ∈Dk,

Pk
(∣∣η�k (xk, ξk;d) − ε�k (xk;d)

∣∣ ≤ δ
)
> 1 − 4 exp

(
−Nk

δ2�2
k

12σ 2
k

)
.

(9)

The proof is given in the appendix. The result in Proposition 3
suffices to show that the probability of the event that the devi-
ation from the first order stationarity of the SAA problem to the 
true counterpart surpassing a threshold can be controlled by an 
appropriate sampling scheme.

Theorem 1. Under Assumptions 1 and 2, for any δ > 0,

lim inf
k→+∞

Pk
(∥∥∇ Fk(xk, ξk) − ∇ F (xk)

∥∥ ≤ δ
) = 1. (10)

Due to the Lipschitz continuity of ∇ Fk(·, ξk) in Assumption 1
and the convergence of �k in Proposition 2, we have∣∣∇ Fk(xk, ξk) − ∇ Fk(xk + �kd, ξk)

∣∣ ≤ M�k‖dk‖,
where M�k tends to zero along with iterations with probability 
1. Again, based on the result in Proposition 3 for the convergence 
of first order stationarity of the SAA problem, we can prove the 
convergence of the approximate gradient obtained from SAA. Now 
we present the following result.

Proposition 4. Under Assumptions 1 and 2, let {Nk}∞k=1 with Nk =
βk�

−2
k log k for any sequence {βk}∞k→∞ satisfying βk → ∞ as k → ∞, 

then

P̃
(

lim inf
k→∞

‖∇ F (xk)‖ = 0
)

= 1.

Propositions 4 shows that to guarantee the convergence to the 
true stationary point in probability, we need some stronger condi-
tions on {βk}∞k=1 than the conditions to guarantee the convergence 
in probability of the step-length �k . In fact the conditions on 
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Table 1
Fixed and variable number sample paths.

FNSP Nk = 200
VNSP1(i) N0 = 5, Nk = kN0

VNSP1(c) N0 = 5, Nk = kN0

VNSP2(i) N0 = 5, Nk = βk log k/�2
k if k − 1 ∈ U , Nk = Nk−1 if k − 1 ∈ S

VNSP2(c) N0 = 5, Nk = βk log k/�2
k if k − 1 ∈ U , Nk = Nk−1 if k − 1 ∈ S

{βk}∞k=1 only require that βk goes to infinity along with the growth 
of k but no requirement on its growth rate. Therefore, the incre-
ment of βk in each iteration could be at a slow pace to control the 
sample size.

5. Numerical study

Numerical tests are comprehensively carried out in this section. 
First of all, we test the performances of different sampling schemes 
under sufficient decrease, i.e., ρ(·) satisfying Assumption 2, and 
simple decrease ρ(·) ≡ 0 for a benchmark Rosenbrock problem. 
Next we implement the algorithm with sampling schemes gener-
ated by Algorithm 1 and (6) for a random Watson function min-
imization problem with a practical dimension. In Section 5.3 the 
comparative analysis are conducted on the performance of GDDS 
algorithm with well investigated derivative free algorithm, StoM-
ADs [1], and use the tests in CUTEst [8] to illustrate the advantages 
of each algorithm.

5.1. Rosenbrock problem

We perform tests on an extended two-dimensional Rosenbrock 
function which is a benchmark in evaluating optimal search meth-
ods, since its unique global minimum solution locating inside a 
long and narrow valley with a parabolic shape. In the test, we in-
tentionally add the random noise to the first decision variable in 
z := (z1, z2)

� . By doing so, we have the following function

f (z, ξ) = 100
(
z2 − (ξ z1)

2)2 + (ξ z1 − 1)2

and the optimization problem minz∈R2 E[ f (z, ξ)]. The random 
noise ξ is independent with z and normally distributed with mean 
1 and variance 0.12. The optimal solution is z∗ = (0.416, 0.175)�; 
the optimal value is f (z∗) = 0.463.

One fixed and five variable number sample paths are compared 
which are listed in the following Table 1, where ‘(i)’ means the 
sample used in each iteration are different and ‘(c)’ means that the 
cumulative sampling scheme is used and βk := 0.001(1 + logν k)

for ν = 0.1. With respect to the above sampling schemes, we test 
simple and sufficient decrease criteria separately. We set ρ(�k) ≡
0, φk = 1, and θk = 0.5 and ρ(�k) = 0.5�2

k , φk = 2, and θk = 0.5
in simple and sufficient decrease criteria respectively. Again in all 
cases, z0 = (−1.200, 1.000)� , �tol = 0.001, �0 = 1 and Dk is the 
set of 4 coordinate directions.

All sampling schemes are repeated 100 times under the above 
two settings. The tests stop once �k ≤ �tol or the number of 
function evaluations reach 106. We report the average number of 
function evaluations in running each sampling scheme, the aver-
age and standard deviation of ‖zK − z∗‖ where K is the index of 
iteration when the algorithm is stopped.

From the above results, we first can identify that the cumu-
lative sampling scheme significantly reduce the total number of 
observations used in an algorithm where the number of overall ob-
servations are decreased from 204, 811 to 2, 021 and 88, 178 and 
1, 388 for VNSP1, and from 184 to 138 and 516 to 134 for VNSP2 
in simple and sufficient decrease criteria respectively. On the other 
hand, the effectiveness of VNSP2 can also be recognized from the 
results in Tables 2 and 3. The VNSP2 attains a solution closest to 
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Fig. 1. Simple decrease, ρ(�k) ≡ 0, φk = 1, θk = 0.5.

Fig. 2. Sufficient decrease, ρ(�k) = 0.5�2
k , φk = 2, θk = 0.5.
Table 2
Performances in simple decrease criterion.

Solution Quality Computation Cost Sampling Cost

avg. dist std. dist avg. of eval std. of eval sum of Nk

FNSP 0.0281 0.0121 203,550 16,594 200
VNSP1(i) 0.0271 0.0070 1,024,056 157,568 204,811
VNSP1(c) 0.0275 0.0058 1,030,777 147,155 2,021
VNSP2(i) 0.0197 0.0125 24,583 9,380 184
VNSP2(c) 0.0245 0.0135 21,898 6,977 138

Table 3
Performances in sufficient decrease criterion.

Solution Quality Computation Cost Sampling Cost

avg. dist std. dist avg. of eval std. of eval sum of Nk

FNSP 0.0147 0.0088 148,080 15,390 200
VNSP1(i) 0.0108 0.0092 440,890 161,357 88,178
VNSP1(c) 0.0128 0.0065 495,861 137,337 1,388
VNSP2(i) 0.0119 0.0095 24,621 13,499 516
VNSP2(c) 0.0184 0.0109 20,414 10,574 134

their true counterparts with the least number of function evalu-
ations compared to the other sampling schemes in both decrease 
criteria. To demonstrate this, we present Figs. 1 and 2 to illustrate 
the computational loads versus the accuracy level achieved by dif-
ferent sampling schemes. It can be identified that among all the 
351
sampling schemes, the VNSP2 satisfies the conditions in Proposi-
tion 4 and achieves the best performance.

5.2. Multi-dimensional problems

In the rest part of the section, we concentrate our compara-
tive analysis on the VNSP algorithms with independent samples at 
different iterations. We focus on the GDDS algorithm with VNSP2 
and illustrate its capability in solving reasonably large scale prob-
lem by using Watson functions. Watson function is the sum of 31
quadratic terms of function f i(·) for i = 1, 2, · · · , 31 and each f i(·)
is a smooth function and the number of decision variables varies 
from 2 to 31. In this test we take into account that each variable 
is multiplied by a normally distributed random noise with mean 1
and variance 0.01. Consider the cases with the number of decision 
variables being n = 10, 20 and 30, and thus the random Watson 
functions are:

f (z, ξ) =
31∑

i=1

(
f i(z, ξ)

)2
,

f i(z, ξ) =
n∑

j=2

( j − 1)ξ j z jt
j−2
i −

(
n∑

j=1

ξ j z jt
j−1
i

)2

− 1,

f30(z, ξ) = ξ1z1, f31(z, ξ) = ξ2z2 − (ξ1z1)
2 − 1
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Fig. 3. Simple decrease, ρ(�k) ≡ 0, φk = 1, θk = 0.5.

Fig. 4. Sufficient decrease, ρ(�k) = 0.5�2
k , φk = 2, θk = 0.5.
where ti = i/29 for 1 ≤ i ≤ 29.
When using the GDDS algorithm to solve random Watson func-

tion minimization problem minz∈Rn E[ f (z, ξ)], the initial point is 
set at (0.5, · · · , 0.5)� with an appropriate dimension. Let �0 = 1, 
�tol = 0.001, N0 = 5n, Dk = {±ei |i = 1, · · · , n}, and the other pa-
rameters are same with the VNSP3 in Section 5.1. We report the 
step-length �k , the estimated function values and the sample size 
Nk in each iteration k in Figs. 3-4.

From the results, we can see that the growth of the problem 
dimension (from 10 to 30) leads to the increment of the number of 
iterations before satisfying the same stop tolerance. Note also that 
in the early stages the GDDS algorithm reduces function values in 
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a fast pace while the sample size remain unchanged, which means 
that the sample sizes in the VNSP3 is increased conservatively at 
the initial stages despite of its overall efficiency.

5.3. Comparative analysis

Before the comparative analysis, we need to emphasize again 
that StoMADS [1] is proposed within a blackbox framework with-
out assuming the ability of fixing the sample, which shows that 
StoMADS is feasible for more problems compared to GDDS algo-
rithm. In this subsection, we focus on the efficiency of each algo-
rithm.
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Fig. 5. Comparison on the distance of zk in GDDS and StoMADS to the true solution: additive noise.

Fig. 6. Comparison on the function value at zk in GDDS and StoMADS: additive noise.
StoMADS is an iterative algorithm designed for unconstrained 
optimization of function with random noise. In each iteration, 
StoMADS has two main steps: search step and poll step. Since 
the search step in StoMADS is optional and we focus on the com-
parison of the GDDS and the StoMADS with the same parameter 
settings, the search steps are not included in the StoMADS when 
solving these numerical tests. The main difference between GDDS 
and StoMADS is the sampling scheme. The GDDS updates sample 
and increases its size at each unsuccessful iterations. Hence the 
sample sizes are consecutively increased when approaching the 
stationary points.

To make two different approaches comparable, we focus our 
analysis on the scenarios where different samples are used for 
evaluating different trial solutions at the same iteration. To this 
end, we modify Algorithm 1 by generating a new sample for each 
trial solutions but control the sample sizes being the same in an it-
eration. This modification might impact the validity of our conver-
gence analysis on the GDDS in Section 4, where additional samples 
in each iteration might introduce higher variances and hence less 
effectiveness in selecting the right candidate. Within this frame-
work, we implement StoMADS and GDDS to minimize the random 
Rosenbrock function with “additive noise”, in which

f (z, ξ) = (
10

(
z2 − z2

1

) + ζ1
)2 + (

(1 − z1)
2 + ζ 2)2
2
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where ζ1, ζ2 are independent random variables with a uni-
form distribution from [−0.100, 0.100]. Since the true problem is 
minz∈Rn E[ f (z, ζ )], we set stop criterion as

f (zk) − f (z∗)
f (z0) − f (z∗)

≤ τ , (11)

where zk is the incumbent solution in iterate k, z0 = (−1.200,

1.000)� , z∗ = (1.000,1.000)� and τ = 0.010.
The results for the “additive noise” scenarios are presented in 

the following two figures: Fig. 5 illustrates that GDDS with sim-
ple decrease stops at a solution with sufficiently large distance 
from the true solution where the true solution of this problem 
analytically obtainable. On the contrary, StoMADS exhibits a faster 
convergence pace at the beginning iterations, and finally StoMADS 
and GDDS with sufficient decrease reach almost the same conver-
gence rate. Similar results can be also observed in Fig. 6.

Now we proceed to more complex problem of minimizing the 
random Rosenbrock function with “multiplicative noise” in Sec-
tion 5.1. It is worth to mention that StoMADS is not intentionally 
proposed for solving this type of problems. We perform these com-
parative analysis to illustrate differences between StoMADS and 
different types of GDDS. First, we consider the scenarios where 
the sample can be fixed and used for every trial solutions where 
we modify the original StoMADS by repeatedly implementing the 
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Fig. 7. Comparison on the distance of zk in GDDS and StoMADS to the true solution: multiplicative noise and fixed sample.

Fig. 8. Comparison on the function value at zk in GDDS and StoMADS: multiplicative noise and fixed sample.

Fig. 9. Comparison on the distance of zk in GDDS and StoMADS to the true solution: multiplicative noise and different sample.
same sample within an iteration. The following figures exhibits 
the performances of different methods in the distances of zk to 
the true solution z∗ and the function values at each iterate. From 
Figs. 7 and 8 we can observe that the StoMADS stops at solu-
tions with certain distances from the true solution but two GDDS 
354
methods converges. In addition, GDDS with sufficient decreases 
converges with less number of observations being used. The phe-
nomena in these figures might implies that the scheme of fixing 
sample in every iteration not necessarily satisfies the convergence 
conditions in StoMADS.
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Fig. 10. Comparison on the function value at zk in GDDS and StoMADS: multiplicative noise and different sample.
We further consider a new scenario in which a new sample 
has to be generated and implemented to evaluate a new trial solu-
tion even when the iteration is unchanged. We again compare the 
distance of zk attained from three methods to the true optimal so-
lutions and the function values of zk . Figs. 9 and 10 clearly show 
that StoMADS exhibits a much better performance compared to its 
counterpart in the fixed sample scheme in Fig. 7 and 8. It can be 
recognized that the reduce rate of function values in StoMADS is 
at the same level as the GDDS with sufficient decrease, while the 
GDDS with simple decrease fails in the convergence. At the stage 
when the number of observations used more than 103, zk yielded 
in each iteration of StoMADS is more volatile than its counterparts 
in GDDS with sufficient decrease, but the higher volatility in zk at 
this stage does not affect the function value where the standard 
deviations of zk yielded by StoMADS is slightly higher.

6. Conclusion

The paper has proposed a sampling scheme to broaden the 
well-known DDS algorithm to solve stochastic optimization prob-
lems where the objective functions are not analytical obtainable. 
To minimize the sampling and computation load, the framework 
of the variable sampling scheme has been incorporated into the 
DDS algorithm and the conditions on the algorithm convergence 
have been investigated. The condition on the growth of sample in 
each iteration has been given to guarantee the convergence of the 
DDS to the true optimal solution with probability one. One of the 
open questions is how to determine which method is of best ef-
fectiveness in saving the sampling efforts and how to allocate the 
samples in each iteration of the method under a given sample re-
source.
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