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Abstract 

     Via building computational (typically mathematical and computer simulation) models, human 

performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-

machine system productivity and safety. This paper describes and summarizes the five key 

questions of human performance modeling: 1) Why we build models of human performance; 2) 

What the expectations of a good human performance model are; 3) What the procedures and 

requirements in building and verifying a human performance model are; 4) How we integrate a 

human performance model with system design; and 5) What the possible future directions of 

human performance modeling research are. Recent and classic HPM findings are addressed in the 

five questions to provide new thinking in HPM’s motivations, expectations, procedures, system 

integration and future directions. 
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1. Introduction  

   This article elaborates on the five key questions in HPM, describing its motivations, 

expectations, procedures, system integration and future applications. Since the area of human 

factors and ergonomics is quite large, this article mainly focuses on the modeling of cognitive-

related human performance (e.g., cognition and motor performance under the control of cognition).  

2. Q1. Why do We Build Models of Human Performance? 

In science, besides unifying many scattered findings from empirical studies (Card, Moran, & 

Newell, 1983), models of human performance provide a systematic and computational 

understanding of the mechanisms of human behavior. In many experimental studies, verbal 

descriptions (sometimes conceptual models) of mechanisms are very important; however, they 

cannot make accurate prediction of human performance. Moreover, since the human cognitive and 

motor system is very complex, verbal descriptions in many cases may not quantify these complex 

relationships. Computational models of human performance can solve these problems. In addition, 

models can also guide researchers in data collection and provide researchers with a baseline against 

which to measure human performance (Sinclair & Drury, 1979). 



 

2 
 

ACCEPTED BY INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS (2016) 

In engineering, models of human performance can help system designers save significant 

amount of time and cost in running experiments, and also be integrated into the intelligent/smart 

systems directly to improve system safety and human performance and/or prevent accidents. The 

ability to predict human behavior means that, in many cases, accidents are prevented and errors 

are minimized to improve system safety and efficiency. For example, a human performance model 

can predict speeding behavior of a driver a few seconds before the actual speeding behavior occurs 

(Zhao, Wu, & Qiao, 2013). Once it was embedded in an intelligent system, the system could send 

pre-speeding warning to drivers to prevent traffic accidents before they occurred (Zhao & Wu, 

2013). 

3. Q2. What are the Expectations of a Good Human Performance Model? 

The expectations of a good human performance model can be summarized into the following 

aspects: Mechanisms, Usefulness, Robustness and Generality, and Simplicity (Called as MURGS 

expectations in HPM).  

Mechanisms (“Does this model address the mechanisms of human performance?”): As we 

discussed in the motivation of human performance modeling, a good model should quantify the 

relationship between the model’s input and output based on the human cognitive and/or motor 

systems’ mechanisms; otherwise, the model may be downgraded to a “black box” model. This 

issue is related to the difference between top-down (theory-driven) human performance models 

and bottom-up (data-driven) models—including artificial intelligence models (e.g., artificial 

neural network (ANN) models) and statistical models), since most bottom-up (data driven) models 

can relatively easily capture the relationships between model’s input and its output (data to be 

modeled) via model training; however, usually bottom-up (data-driven) models do not quantify 

the fundamental mechanisms of the human or human-machine systems, or their modeling 

mechanisms are different from the mechanisms of human cognition and motor system (they have 

their own sets of modeling/quantification rules).  Moreover, due to the lack of the top-down 

understanding of the mechanisms of human or human-machine systems, bottom-up (data driven) 

models may over-fit one data set with extensive training for that data set, but under-fit a new data 

set, leading to their problems in robustness and generality (in other words, leading to the “missing 

the forest” problem). 

Usefulness (“Can this model, once built and verified by the data, improve real-world system 

performance/safety/efficiency?”): Different from cognitive modeling, such as the work of Isbel & 
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Mahar (2015), that focuses more on the mechanisms and human behavior in lab settings, the 

emphasis of human performance modeling is more on the human performance and safety in 

practice and real-world settings. Accordingly, the first expectation of a good human performance 

model is that its prediction should be directly related to human performance and be useful in real-

world system design to improve the performance, safety, and efficiency of human operators and/or 

the human-machine system as a whole in real-world settings.  

Robustness and Generality (“Can this model predict multiple experimental results without 

over- or under-fitting?”): This expectation of a good model includes two parts: a) Avoid over-

fitting or under-fitting; and b) Verification by multiple empirical studies. A good model should not 

only avoid under-fitting the data (e.g., R square between the model’s prediction and experimental 

data is below 0.5), but also avoid over-fitting the data. Over-fitting usually means a perfect match 

between the prediction and the experimental data from one study but a poor match between the 

prediction and the experimental data from another study (See detail discussions of the model over-

fitting and under-fitting issues in the work of Lewandowsky & Farrell (2010)). For example, given 

the same root-mean-square (RMS) of the two models (A and B), Model A verified by two 

experiments (R square for Experiment 1=0.75 and 0.71 for Experiment 2) is more robust than 

Model B whose R square for Experiment 1=1 (over-fitting) and 0.46 (under-fitting) for Experiment 

2, even if their averaged R square is the same (0.73).  

Simplicity (“Is this the simplest model for making a useful and a robust prediction based on 

human performance mechanisms?”): This expectation is also very important in evaluating a human 

performance model. This simplicity rule is the same as the parsimonious rule in mathematical and 

simulation modeling in general: a simpler model is better than a complex model as long as they 

achieve the same level of functionalities. Moreover, mathematical models are preferred in general 

than simulation models unless NP-Hard or no analytic solution problem has been encountered by 

mathematical models (Bank, 2000). The simplicity in HPM is defined as the number of free 

parameters (The parameters of a model whose values are estimated from the data to be modeled 

to maximally align the model's prediction) (Lewandowsky & Farrell, 2010), the format and 

structure of equations if it is a mathematical model, and the number of lines of codes in general if 

it is a simulation model. For example, a linear model is better than a non-linear model with the 

same number of parameters as long as both models meet the other three expectations at the same 

level. Another way to compare the simplicity of different models is to calculate their AIC (Akaike 
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Information Criterion) which considers the number of free parameters (Busemeyer, 2000); 

however, AIC does not consider structures of equations or the number of lines of computer 

simulation codes.  

4. Q3. What are the Procedures and Requirements in Building and Verifying a Human 

Performance Model? 

Depending on the availability of the data and interests of the modeler (the person who builds a 

model), we summarize the three different approaches to carry out the human performance 

modeling work.  

Approach 1 (Conceptual/Existing Model or TheoryModel Verify the Model by Other 

People Later) In situations that there is no data available or modelers are not able to conduct 

experiments to verify the model, researchers can still propose/build model without its verification 

from data. A classic example of modeling work is Einstein’s Relativity Theory which was 

proposed based on theory without experimental data to verify the model’s predictions directly at 

the time when the model was proposed (Einstein, 1905). After a few decades when technologies 

were feasible to carry out the experiments, the Relativity Theory was eventually verified by the 

experimental data directly (Hafele & Keating, 1972). We actually think that this is one of 

acceptable ways of modeling to avoid a modeling problem—If the modeler did have data prior to 

building a model, he/she could learn what patterns exist in the data during the modeling process 

and change the model to fit that data, consciously or subconsciously.  

In situations that data are available (either from existing published work or from a modeler’s 

own experiments), we typically regard these modeling processes as a mathematical statement proof 

process (e.g., prove the “a2+b2=c2” Pythagorean Theorem). This is because the modeler receives 

data (prediction of the model) before the model is built (although the published modeling work is 

usually written in reverse order, presenting the model first and model verification with data second). 

Therefore, a modeler should clearly provide step-by-step details outlining how his/her model 

reaches the final prediction (the model’s prediction will “definitely” be verified by the data, 

otherwise the modeler will not even submit this modeling work). If it is a mathematical model of 

human performance, a modeler should list all of the model derivation steps clearly from the model 

input to the model output (prediction of the data), without skipping any important steps; If it is a 

computer simulation model, a modeler should list and describe the meaning of all the code in the 

simulation (just listing the computer code at the end of the paper or putting them on a website may 
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not be enough since it is very difficult for a reviewer/reader to understand the code without the 

author’s descriptions), to ensure that there are no codes purposely added in the simulation codes 

to make the model fit the data.  

Approach 2 (Conceptual/Existing Model or TheoryModel 1Verify Model (Needs 

Improvement)Model 2 etc.) 

Some modeling work has treated modeling as an iterative process, such as EPIC’s modeling 

study (Kieras & Meyer, 1997). Based on conceptual models, theory, or existing models, 

researchers built a relatively simple model first, verifying the model with the data; during the 

verification process, researchers learned that the simpler model is missing some important 

component(s), and then they improved the model to improve its prediction. The improved model 

was then verified with the data again.   

Approach 3 (Conceptual/Existing Model or TheoryModelVerify the Model) 

Some studies, such as (Du, Shi, & Yuan, 2007), in human performance modeling area appear to 

have skipped the iterative process in human performance modeling  (judged by the work presented 

in their papers), proposing models immediately followed by their verification with the data. When 

either Approach 2 or 3 is used, a modeler should clearly show how their models reach the 

prediction step by step since they receive the data before the development of the model. In addition, 

a modeler should also report the number of free parameters used in the modeling process. 

Approach 3 also includes another procedure that researchers proposed a new model and then 

develop hypothesis to collect data based on this new model, where newly collected data will be 

further used to verify the hypothesis and the new model (Takahiro Wada, Konno, Fujisawa, & Doi, 

2012; T. Wada & Yoshida, Accepted). 

In the verification stage of a human performance model, we suggest each modeling work 

reports R square and Root-Mean-Square (RMS), since R square can reflect how the model’s 

prediction captures the changes of the patterns of experimental data and RMS reflects the absolute 

difference (i.e., magnitude of prediction error) between the model’s prediction and experimental 

data (See Fig 1. The Y axis is usually an index of human performance (e.g., task completion time; 

X axis can be an independent variable in an experiment (e.g., task difficulty level), time, or other 

variables as an input of the model). However, there are two situations that R square cannot be used 
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as an index of model verifications: Situation 1: When 

both the model’s prediction and experimental data are in 

parallel with the X axis: R square cannot be calculated in 

this case since the denominator of the R square’s 

equation is 0 (See Fig 1). Situation 2: There is only one 

data point in the experimental data (e.g., error rate of the 

human operator) and we need at least 2 data points in the 

experimental data to calculate R square between the model’s prediction and experimental data. In 

these situations, we can use the percentage of estimation error (John, 1996) to verify a model: 

(experimental data - model’s prediction) / experimental data×100% or |experimental data - model’s 

prediction|/ experimental data×100%.  In addition, some researchers performed statistical analysis 

(e.g., ANOVA or t test) to check whether there is a significant difference between experimental 

data and a model’s predictions (Liu, 2005).  

5. Q4. How do we Integrate a Human Performance Model with System Design?  

Ideally speaking, a good human performance modeling work should include three major steps: 

Building a model (including extending an existing model), verifying the model’s prediction with 

data, and applying the model in system design (sometimes referred to as “playing” a model). In 

many published modeling studies, the third step is optional; however, we expect modeling work 

should at least describe this third step verbally since we are building useful human performance 

model in practice (See Pan and Bolton's paper in this special issue).  Besides the traditional 

approach of prediction of human performance, there are at least two additional approaches that we 

can “play” a model after it is built and verified by experimental data.  

     Playing Approach 1: Optimizing a model’s input to maximize or minimize its output  

     The goal of human performance modeling is to maximize the safety, efficiency, and (or) 

performance of the human-machine system. Accordingly, we can build objective functions to 

maximize or minimize a model’s output (human performance including error rate, task completion 

time, workload etc.) by treating the input of the model as decision variables. For example, after a 

mathematical model of human performance in a numerical typing task was built, we can derive a 

set of objective functions to maximize a human operator’s typing performance (model’s output) 

and treat the key sizes and gaps among keys (model’s input) as decision variables. The solutions 

 
Figure 1. R Square and RMS 
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of the objective functions will determine the optimal values of the key sizes and gaps among keys, 

which can be directly used in system design (Lin & Wu, 2012).  

Playing Approach 2: Prediction of human performance can be an important input of 

intelligent system design to achieve safety and overall system performance.  

The output of a human performance model can serve as an important input for various intelligent 

systems. For example, after a lane-change model of human drivers was developed (Salvucci, In 

press), we can predict when a driver is going to change lanes before that actual behavior occurs 

and then design intelligent systems to send pre-warnings to the current and other drivers to prevent 

traffic accidents. Another example in transportation safety is speeding prediction and prevention. 

Once a human performance model was able to predict the over-speeding behavior of a driver a few 

seconds before that behavior actually happens, an intelligent pre-warning system was designed to 

receive this output from the model and send pre-warnings to the driver (Zhao et al., 2013). An 

experimental study validated that the model-based intelligent pre-warning system was able to 

achieve significantly better safety benefits (e.g., smaller magnitude of speeding) compared to 

traditional post-warning system (warning is sent to a driver after speeding is detected) (Zhao & 

Wu, 2013). 

6. Q5. What are the Possible Future Directions of Human Performance Modeling Research? 

Allen Newell’s dream for building unified models that can mimic almost every activity of human 

beings (e.g., driving a car and daydreaming) has been the major direction of human performance 

modeling research for a long time (Newell, 1973). Moreover, there are several new directions of 

human performance modeling for modelers to consider:  

1) Solving the Next-Moment Prediction Challenge by Integrating HPM with Data-Driven 

Models/Methods  

Prediction of an individual’s behavior in the next moment (e.g., a few seconds, minutes or hours 

in advance depending on dynamic properties of the human-machine system) under a specific 

situation is one of the most important predictions in practice, so that intelligent systems can predict 

and interact with human operator(s) almost in real time and interrupt problem behaviors. We call 

this the next-moment prediction challenge. Given the dynamic changes of human operators, their 

tasks, and environment, it is very hard for top-down models to solve this challenge since the data 

are only served as a way to verify the model and lots of information in the data are underutilized 

by the top-down human performance models. However, data-driven approaches (e.g., data mining 
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methods) have the limitations in lacking a top-down theoretical understanding of the mechanisms, 

leading to the “missing the forest” problem. Accordingly, the integration between the top-down 

HPM and data-driven models/methods may solve the next-moment prediction challenge and lead 

to an important direction for HPM (Lin, Wu, & Chaovalitwongse, 2015).  

2) Integrating with System Design 

Usefulness and system design integration are the two features of HPM that makes it different 

from cognitive modeling. Future work in HPM should emphasize how a human performance 

model is able to assist system design to improve human performance. Compared with experimental 

findings, HPM can be embedded in intelligent systems directly to predict and optimize human 

performance (including workload) when the context of tasks and human information processing 

capacities change (Wu, Tsimhoni, & Liu, 2007; Zhao & Wu, 2013). 

3) Driven by new modeling theories: Future HPM will benefit from the advances of other 

modeling theories (e.g., Chaos Theory (Dafilis, Frascoli, Cadusch, & Liley, 2013; Jin & Chen, 

2016) and Theory Of Everything (TOE) (Weinberg, 1992)). New theories will not only provide 

HPM modelers with new modeling approaches but also shed light on prediction of human 

performance and behavior at their stochastic aspects. Even though Theory Of Everything (TOE) 

is currently focused on our physical world, we will not rule out the possibility of incorporating 

HPM in TOE (Vimal, 2010) since the human cognition system is an important part of the world 

and the human brain is still a physical system in essence.   
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